(>=>) :: (a -> m b) -> (b -> m c) -> a -> m c

xml-conduit - Text.XML.Cursor.Generic  Text.XML.Cursor  

Left-to-right Kleisli composition of monads.

(...) :: (a -> b) -> (b -> c) -> a -> c

ADPfusion - ADP.Fusion  

Applies the objective function h to a stream s. The objective function reduces the stream to a single optimal value (or some vector of co-optimal things).

(>=>) :: (a -> m b) -> (b -> m c) -> a -> m c

xml-enumerator - Text.XML.Cursor.Generic  Text.XML.Cursor  

Left-to-right Kleisli composition of monads.

(|>) :: (a -> b) -> (b -> c) -> a -> c

hx - Haskell.X.Ops  

flip (.), fixity is infixl 9 (same as for .), from F#.

(&|) :: (Cursor node -> [a]) -> (a -> b) -> Cursor node -> [b]

xml-conduit - Text.XML.Cursor.Generic  Text.XML.Cursor  

Apply a function to the result of an axis.

(>>>) :: (a -> b) -> (b -> c) -> a -> c

data-aviary - Data.Aviary.Functional  

For the function instance of Category left-to-right composition is the queer bird.

(=$) :: (a -> b) -> (b -> c) -> a -> c

simple-conduit - Conduit.Simple.Compat  

Compose a Conduit and a Sink into a new Sink. Note that this is just function composition, so (.) can be used to achieve the same thing.

queer :: (a -> b) -> (b -> c) -> a -> c

data-aviary - Data.Aviary.BirdsInter  

Q combinator - queer bird.

Haskell (##) in Peter Thiemann's Wash, reverse composition.

(#) :: (a -> b) -> (b -> c) -> a -> c

Animas - FRP.Animas.Miscellany  FRP.Animas  

Reverse composition

(=$=) :: (a -> b) -> (b -> c) -> a -> c

simple-conduit - Conduit.Simple  

Compose two Conduit. This is also just function composition.

queer :: (a -> b) -> (b -> c) -> a -> c

data-aviary - Data.Aviary.Birds  

Q combinator - queer bird.

Haskell (##) in Peter Thiemann's Wash, reverse composition.

(=$=) :: (a -> b) -> (b -> c) -> a -> c

simple-conduit - Conduit.Simple.Compat  

Compose two Conduit. This is also just function composition.

(=$) :: (a -> b) -> (b -> c) -> a -> c

simple-conduit - Conduit.Simple  

Compose a Conduit and a Sink into a new Sink. Note that this is just function composition, so (.) can be used to achieve the same thing.